Generalizing Schreier families to large index sets II

Christina Brech Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Winterschool 2017

Summary of results in Banach spaces

- The Tsirelson space is a *reflexive* Banach space with no subsymmetric sequences.
- (Ketonen, 1974) Any Banach space of density equal to the first ω -Erdös cardinal has subsymmetric sequences.
- (Odell, 1985) There is a Banach space of density c with no subsymmetric sequences.
- (Argyros, Motakis, 2014) There is a reflexive Banach space of density \mathfrak{c} with no subsymmetric sequences.
- (B., Lopez-Abad, Todorcevic) For every κ smaller than the first inaccessible cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.
- (B., Lopez-Abad, Todorcevic) For every κ smaller than the first Mahlo cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.

Summary of results in Banach spaces

- The Tsirelson space is a *reflexive* Banach space with no subsymmetric sequences.
- (Ketonen, 1974) Any Banach space of density equal to the first ω -Erdös cardinal has subsymmetric sequences.
- (Odell, 1985) There is a Banach space of density c with no subsymmetric sequences.
- (Argyros, Motakis, 2014) There is a reflexive Banach space of density \mathfrak{c} with no subsymmetric sequences.
- (B., Lopez-Abad, Todorcevic) For every κ smaller than the first inaccessible cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.
- (B., Lopez-Abad, Todorcevic) For every κ smaller than the first Mahlo cardinal, there is a reflexive Banach space of density κ with no subsymmetric sequences.
- What is the smallest cardinal κ such that every (reflexive) Banach space of density at least κ has a subsymmetric sequence?

First main result

Our main purpose in this talk is to give elements of the proof of the following:

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ .

First main result

Our main purpose in this talk is to give elements of the proof of the following:

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ .

 $(\mathcal{F}_n)_n$ on κ is a CL-sequence if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_n by \mathcal{S} .

Our main purpose in this talk is to give elements of the proof of the following:

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ .

 $(\mathcal{F}_n)_n$ on κ is a CL-sequence if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_n by \mathcal{S} .

- There is a CL-sequence of families on κ iff there is a CL-sequence of families on any index set of cardinality κ .
- If there is a CL-sequence of families on κ , then there is a CL-sequence of families on every $\lambda < \kappa$.

Given \mathcal{F} on κ and \mathcal{H} on ω , \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

Given \mathcal{F} on κ and \mathcal{H} on ω , \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

Example 14

If \mathcal{F} is a hereditary and compact family on κ , then $\mathcal{G} = \mathcal{F} \sqcup \mathcal{F} \sqcup \cdots \sqcup \mathcal{F}$ is a multiplication of \mathcal{F} by $[\omega]^{\leq n}$, where $\mathcal{F} \sqcup \mathcal{F} = \{s \cup t : s, t \in \mathcal{F}\}$.

A CL-sequence on ω

Example 15

Given hereditary and compact families \mathcal{F} and \mathcal{F}' on ω , let

$$\mathcal{F} \oplus \mathcal{F}' = \{ s \cup t : s < t, \; s \in \mathcal{F}', \; t \in \mathcal{F} \},$$

$$\mathcal{F} \otimes \mathcal{F}' = \{\bigcup_{k < n} s_k : n \in \omega, \ s_k < s_{k+1}, \ s_k \in \mathcal{F}, \ \{\min s_k : k < n\} \in \mathcal{F}'\},\$$

and notice that $\mathcal{G} = (\mathcal{F} \otimes \mathcal{S}) \oplus \mathcal{F}$ is a multiplication of \mathcal{F} by \mathcal{S} .

A CL-sequence on ω

Example 15

Given hereditary and compact families \mathcal{F} and \mathcal{F}' on ω , let

$$\mathcal{F} \oplus \mathcal{F}' = \{ s \cup t : s < t, \ s \in \mathcal{F}', \ t \in \mathcal{F} \},$$

$$\mathcal{F} \otimes \mathcal{F}' = \{\bigcup_{k < n} s_k : n \in \omega, \ s_k < s_{k+1}, \ s_k \in \mathcal{F}, \ \{\min s_k : k < n\} \in \mathcal{F}'\},\$$

and notice that $\mathcal{G} = (\mathcal{F} \otimes \mathcal{S}) \oplus \mathcal{F}$ is a multiplication of \mathcal{F} by \mathcal{S} . Define inductively:

•
$$\mathcal{F}_0 = \mathcal{S};$$

• $\mathcal{F}_{n+1} = (\mathcal{S}_n \otimes \mathcal{S}) \oplus \mathcal{S}_n.$

 $(\mathcal{F}_n)_n$ is a CL-sequence of families on ω .

In order to prove the first main result, we make use of a notion of multiplication of families on partially ordered sets (instead of cardinals):

In order to prove the first main result, we make use of a notion of multiplication of families on partially ordered sets (instead of cardinals): let $\mathcal{P} = (P, <_P)$ be a partial ordering. By a family on chains of \mathcal{P} we mean a family on P whose elements are chains.

In order to prove the first main result, we make use of a notion of multiplication of families on partially ordered sets (instead of cardinals): let $\mathcal{P} = (P, <_P)$ be a partial ordering. By a family on chains of \mathcal{P} we mean a family on P whose elements are chains. Given a family \mathcal{F} on chains of \mathcal{P} and a family \mathcal{H} on ω , we say that a family \mathcal{G} on chains of \mathcal{P} is a multiplication on chains of \mathcal{F} by \mathcal{H} if

In order to prove the first main result, we make use of a notion of multiplication of families on partially ordered sets (instead of cardinals): let $\mathcal{P} = (P, <_P)$ be a partial ordering. By a family on chains of \mathcal{P} we mean a family on P whose elements are chains. Given a family \mathcal{F} on chains of \mathcal{P} and a family \mathcal{H} on ω , we say that a family \mathcal{G} on chains of \mathcal{P} is a multiplication on chains of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} such that $\bigcup_n s_n$ is a chain has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

In order to prove the first main result, we make use of a notion of multiplication of families on partially ordered sets (instead of cardinals): let $\mathcal{P} = (P, <_P)$ be a partial ordering. By a family on chains of \mathcal{P} we mean a family on P whose elements are chains. Given a family \mathcal{F} on chains of \mathcal{P} and a family \mathcal{H} on ω , we say that a family \mathcal{G} on chains of \mathcal{P} is a multiplication on chains of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} such that $\bigcup_n s_n$ is a chain has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

Notice that in case the order is total (e.g. ${\cal P}$ is a cardinal), this notion coincides with the previous one.

In order to prove the first main result, we make use of a notion of multiplication of families on partially ordered sets (instead of cardinals): let $\mathcal{P} = (P, <_P)$ be a partial ordering. By a family on chains of \mathcal{P} we mean a family on P whose elements are chains. Given a family \mathcal{F} on chains of \mathcal{P} and a family \mathcal{H} on ω , we say that a family \mathcal{G} on chains of \mathcal{P} is a multiplication on chains of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} such that $\bigcup_n s_n$ is a chain has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

Notice that in case the order is total (e.g. ${\cal P}$ is a cardinal), this notion coincides with the previous one.

For a fixed set P, we will consider multiplications on chains of families on P with respect to some partial order, but also with respect to any total order on P.

In order to prove the first main result, we make use of a notion of multiplication of families on partially ordered sets (instead of cardinals): let $\mathcal{P} = (P, <_P)$ be a partial ordering. By a family on chains of \mathcal{P} we mean a family on P whose elements are chains. Given a family \mathcal{F} on chains of \mathcal{P} and a family \mathcal{H} on ω , we say that a family \mathcal{G} on chains of \mathcal{P} is a multiplication on chains of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} such that $\bigcup_n s_n$ is a chain has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

Notice that in case the order is total (e.g. \mathcal{P} is a cardinal), this notion coincides with the previous one.

For a fixed set P, we will consider multiplications on chains of families on P with respect to some partial order, but also with respect to any total order on P. In this case, we will say "multiplication" instead of "multiplication on chains".

Given a cardinal κ , let $T = 2^{\leq \kappa}$ be the complete binary tree of height $\kappa + 1$ and let < denote the usual partial order on T and $ht : T \to \kappa + 1$ be the height function.

Given a cardinal κ , let $T = 2^{\leq \kappa}$ be the complete binary tree of height $\kappa + 1$ and let < denote the usual partial order on T and $ht : T \to \kappa + 1$ be the height function.

Given a family \mathcal{F} on $\kappa(+1)$, let $\mathcal{C}_{\mathcal{F}} = \{s \in [T]^{<\omega} : s \text{ is a chain and } ht''s \in \mathcal{F}\}.$

Given a cardinal κ , let $T = 2^{\leq \kappa}$ be the complete binary tree of height $\kappa + 1$ and let < denote the usual partial order on T and $ht : T \to \kappa + 1$ be the height function.

Given a family \mathcal{F} on $\kappa(+1)$, let $\mathcal{C}_{\mathcal{F}} = \{s \in [T]^{<\omega} : s \text{ is a chain and } ht''s \in \mathcal{F}\}.$

Fact 16

(i) If ${\mathcal F}$ is hereditary and compact, then so is ${\mathcal C}_{{\mathcal F}}.$

Given a cardinal κ , let $T = 2^{\leq \kappa}$ be the complete binary tree of height $\kappa + 1$ and let < denote the usual partial order on T and $ht : T \to \kappa + 1$ be the height function.

Given a family \mathcal{F} on $\kappa(+1)$, let $\mathcal{C}_{\mathcal{F}} = \{s \in [T]^{<\omega} : s \text{ is a chain and } ht''s \in \mathcal{F}\}.$

Fact 16

- (i) If \mathcal{F} is hereditary and compact, then so is $\mathcal{C}_{\mathcal{F}}$.
- (ii) If G is a multiplication of F by some H on ω , then C_G is a multiplication on chains of C_F by H with respect to <.

Notice that given \mathcal{P} and \mathcal{Q} be partial orderings with infinite chains and $\lambda: P \to Q$, we can similarly define

Notice that given \mathcal{P} and \mathcal{Q} be partial orderings with infinite chains and $\lambda: \mathcal{P} \to \mathcal{Q}$, we can similarly define

 $\mathcal{C}_{\mathcal{F}} = \{ s \in [Q]^{<\omega} : s \text{ is a chain and } \lambda'' s \in \mathcal{F} \},\$

for some family \mathcal{F} on P.

Notice that given \mathcal{P} and \mathcal{Q} be partial orderings with infinite chains and $\lambda: \mathcal{P} \to \mathcal{Q}$, we can similarly define

 $\mathcal{C}_{\mathcal{F}} = \{s \in [Q]^{<\omega} : s \text{ is a chain and } \lambda''s \in \mathcal{F}\},\$

for some family \mathcal{F} on P. The same proof yields a more general result:

Notice that given \mathcal{P} and \mathcal{Q} be partial orderings with infinite chains and $\lambda: \mathcal{P} \to \mathcal{Q}$, we can similarly define

 $\mathcal{C}_{\mathcal{F}} = \{s \in [Q]^{<\omega} : s \text{ is a chain and } \lambda''s \in \mathcal{F}\},\$

for some family \mathcal{F} on P. The same proof yields a more general result:

Theorem 17

Let $\lambda : P \to Q$ be such that it takes chains into chains and is one-to-one on chains.

Notice that given \mathcal{P} and \mathcal{Q} be partial orderings with infinite chains and $\lambda: \mathcal{P} \to \mathcal{Q}$, we can similarly define

 $\mathcal{C}_{\mathcal{F}} = \{s \in [Q]^{<\omega} : s \text{ is a chain and } \lambda''s \in \mathcal{F}\},\$

for some family \mathcal{F} on P. The same proof yields a more general result:

Theorem 17

Let $\lambda : P \to Q$ be such that it takes chains into chains and is one-to-one on chains.

(i) If \mathcal{F} is hereditary and compact, then so is $\mathcal{C}_{\mathcal{F}}$.

Notice that given \mathcal{P} and \mathcal{Q} be partial orderings with infinite chains and $\lambda: \mathcal{P} \to \mathcal{Q}$, we can similarly define

 $\mathcal{C}_{\mathcal{F}} = \{s \in [Q]^{<\omega} : s \text{ is a chain and } \lambda''s \in \mathcal{F}\},\$

for some family \mathcal{F} on P. The same proof yields a more general result:

Theorem 17

Let $\lambda : P \to Q$ be such that it takes chains into chains and is one-to-one on chains.

- (i) If \mathcal{F} is hereditary and compact, then so is $\mathcal{C}_{\mathcal{F}}$.
- (ii) If G is a multiplication on chains of F by some H on ω, then C_G is a multiplication on chains of C_F by H.

Our goal now is to pass from multiplications on chains of (T, <) to multiplications on T (with any total order), meaning that the multiplication of a family \mathcal{F} on T must contain many unions of elements of \mathcal{F} and not only unions within some chain.

Our goal now is to pass from multiplications on chains of (T, <) to multiplications on T (with any total order), meaning that the multiplication of a family \mathcal{F} on T must contain many unions of elements of \mathcal{F} and not only unions within some chain. Given a family \mathcal{C} on T, let

Our goal now is to pass from multiplications on chains of (T, <) to multiplications on T (with any total order), meaning that the multiplication of a family \mathcal{F} on T must contain many unions of elements of \mathcal{F} and not only unions within some chain.

Given a family C on T, let

• $\mathcal{B}_{\mathcal{C}} = \{s \in [T]^{<\omega} : \text{ the chains of } \langle s \rangle \text{ belong to } \mathcal{C}\},\$ where $\langle s \rangle = \{t_0 \land t_1 : t_0, t_1 \in s\}.$

Our goal now is to pass from multiplications on chains of (T, <) to multiplications on T (with any total order), meaning that the multiplication of a family \mathcal{F} on T must contain many unions of elements of \mathcal{F} and not only unions within some chain.

Given a family C on T, let

• $\mathcal{B}_{\mathcal{C}} = \{s \in [T]^{<\omega} : \text{ the chains of } \langle s \rangle \text{ belong to } \mathcal{C}\},\$ where $\langle s \rangle = \{t_0 \land t_1 : t_0, t_1 \in s\}.$

Theorem 18

• If C is a hereditary and compact, then so is \mathcal{B}_{C} .

Our goal now is to pass from multiplications on chains of (T, <) to multiplications on T (with any total order), meaning that the multiplication of a family \mathcal{F} on T must contain many unions of elements of \mathcal{F} and not only unions within some chain.

Given a family C on T, let

• $\mathcal{B}_{\mathcal{C}} = \{s \in [T]^{<\omega} : \text{ the chains of } \langle s \rangle \text{ belong to } \mathcal{C}\},\$ where $\langle s \rangle = \{t_0 \land t_1 : t_0, t_1 \in s\}.$

Theorem 18

• If C is a hereditary and compact, then so is $\mathcal{B}_{\mathcal{C}}$.

If D is a multiplication on chains of C by H on (T, <), then B_D is a multiplication of B_C by H on T (with any total order).

Our goal now is to pass from multiplications on chains of (T, <) to multiplications on T (with any total order), meaning that the multiplication of a family \mathcal{F} on T must contain many unions of elements of \mathcal{F} and not only unions within some chain.

Given a family C on T, let

• $\mathcal{B}_{\mathcal{C}} = \{s \in [T]^{<\omega} : \text{ the chains of } \langle s \rangle \text{ belong to } \mathcal{C}\},\$ where $\langle s \rangle = \{t_0 \land t_1 : t_0, t_1 \in s\}.$

Theorem 18

• If C is a hereditary and compact, then so is \mathcal{B}_{C} .

If D is a multiplication on chains of C by H on (T, <), then B_D is a multiplication of B_C by H on T (with any total order).

Corollary 19

For every cardinal κ below the first inaccessible, there is a CL-sequence $(\mathcal{F}_n)_n$ of families on κ .

Stepping up below the first Mahlo cardinal

In order to construct CL-sequences of families on all cardinals below the first Mahlo cardinal, we have to deal with families on more complex trees than binary trees.

Stepping up below the first Mahlo cardinal

In order to construct CL-sequences of families on all cardinals below the first Mahlo cardinal, we have to deal with families on more complex trees than binary trees.

Let (T, <) be a (rooted) tree and define the following auxiliary partial order on T:

• $t <_a s$ iff t and s they are immediate successors of the same node.

Stepping up below the first Mahlo cardinal

In order to construct CL-sequences of families on all cardinals below the first Mahlo cardinal, we have to deal with families on more complex trees than binary trees.

Let (T, <) be a (rooted) tree and define the following auxiliary partial order on T:

• $t <_a s$ iff t and s they are immediate successors of the same node. Notice that being a chain in $(T, <_a)$ means being a particular type of antichain with respect to < (which we denote by $<_c$ from now on): a subset of immediate successors of a single node of T.

Given A and C families on T, let $A \odot C$ be the family of finite subsets s of T such that:

Given A and C families on T, let $A \odot C$ be the family of finite subsets s of T such that:

• the chains of $\langle s \rangle$ with respect to $<_c$ belong to ${\cal C}$ (as in the case of the binary tree);

Given A and C families on T, let $A \odot C$ be the family of finite subsets s of T such that:

- the chains of $\langle s \rangle$ with respect to $<_c$ belong to ${\cal C}$ (as in the case of the binary tree);
- and for every $t \in \mathcal{T}$, $\mathit{ls}_t''\langle s
 angle \in \mathcal{A}$,

where $ls''_t x = \{\text{immediate successors of } t \text{ below some element of } x\}.$

Given A and C families on T, let $A \odot C$ be the family of finite subsets s of T such that:

- the chains of $\langle s \rangle$ with respect to $<_c$ belong to ${\cal C}$ (as in the case of the binary tree);
- and for every $t \in T$, $ls_t''\langle s \rangle \in \mathcal{A}$,

where $ls''_t x = \{\text{immediate successors of } t \text{ below some element of } x\}.$

Lemma 20

Any infinite set X of a tree T contains either an infinite chain, or an infinite comb, or an infinite fan.

Given A and C families on T, let $A \odot C$ be the family of finite subsets s of T such that:

- the chains of $\langle s \rangle$ with respect to $<_c$ belong to ${\cal C}$ (as in the case of the binary tree);
- and for every $t \in T$, $ls_t''\langle s \rangle \in \mathcal{A}$,

where $ls''_t x = \{\text{immediate successors of } t \text{ below some element of } x\}.$

Lemma 20

Any infinite set X of a tree T contains either an infinite chain, or an infinite comb, or an infinite fan. Hence, any infinite subtree τ of a tree T contains either an infinite chain, or an infinite fan.

Given A and C families on T, let $A \odot C$ be the family of finite subsets s of T such that:

- the chains of $\langle s \rangle$ with respect to $<_c$ belong to ${\cal C}$ (as in the case of the binary tree);
- and for every $t \in T$, $\textit{Is}''_t \langle s \rangle \in \mathcal{A}$,

where $ls''_t x = \{\text{immediate successors of } t \text{ below some element of } x\}.$

Lemma 20

Any infinite set X of a tree T contains either an infinite chain, or an infinite comb, or an infinite fan. Hence, any infinite subtree τ of a tree T contains either an infinite chain, or an infinite fan.

Proof.

If follows from Ramsey Theorem.

Theorem 21 If A and C are hereditary and compact, then so is $A \odot C$.

Theorem 21 If A and C are hereditary and compact, then so is $A \odot C$.

Proof.

Hereditariness is clear. For compacity, let $(\tau_k)_k$ be a sequence in $\mathcal{A} \odot \mathcal{C}$. It is enough to assume that τ_k 's are subtrees. Assume it converges to some infinite set τ , which has to be a subtree.

- If τ has an infinite chain C, then (τ_k ∩ C)_k which would converge to C, contradicting the compacity of C.
- If τ contains an infinite fan F with root u, then (Is_u"τ_k)_k would converge to Is_u"F, contradicting the compacity of A.

Theorem 21 If A and C are hereditary and compact, then so is $A \odot C$.

Proof.

Hereditariness is clear. For compacity, let $(\tau_k)_k$ be a sequence in $\mathcal{A} \odot \mathcal{C}$. It is enough to assume that τ_k 's are subtrees. Assume it converges to some infinite set τ , which has to be a subtree.

- If τ has an infinite chain C, then (τ_k ∩ C)_k which would converge to C, contradicting the compacity of C.
- If τ contains an infinite fan F with root u, then (Is_u"τ_k)_k would converge to Is_u"F, contradicting the compacity of A.

Now, if \mathcal{A}_1 and \mathcal{C}_1 are a multiplication of \mathcal{A}_0 and \mathcal{C}_0 by \mathcal{S} respectively, then we want to find a multiplication of $\mathcal{A}_0 \odot \mathcal{C}_0$ by \mathcal{S} . The following result is needed...

Theorem 22 (Canonical form of sequences of subtrees)

Suppose that $(\tau_k)_k$ is a sequence of finite subtrees of T. Then there is a subsequence $(\tau_k)_{k\in M}$ which is a Δ -system of root $\overline{\varrho}$ such that

(1) For every $i \neq j$ and $k \neq l$ in M one has that

$$\tau_{\infty} := (\tau_i, \tau_j)_{\infty} = (\tau_k, \tau_l)_{\infty},$$

where $(\tau_i, \tau_j)_{\infty}$ is the set of maximal elements u of ϱ with the property that there are $v \in \langle \tau_i \cup \tau_j \rangle$, $t_0 \in \tau_0 \setminus \tau_1$ and $t_1 \in \tau_1 \setminus \tau_0$ with $u \le v \le t_0, t_1$.

(2) Let u ∈ τ_∞. For each i < j let ∞_{i,j}(u) be the (unique) maximal v ∈ ⟨τ_i ∪ τ_j⟩ with the property that there are t₀ ∈ τ₀ \ τ₁ and t₁ ∈ τ₁ \ τ₀ with u ≤ v ≤ t₀, t₁. Then ∞_i(u) := ∞_{i,j}(u) = ∞_{i,k}(u) for every i < j < k, and ∞_i(u) ≤ ∞_j(u) for every i ≤ j. Moreover, one of the following holds.
(2.1) ∞_i(u) < ∞_j(u) for every i < j and ∞_i(u) ∉ ∪_k τ_k for every i < j.
(2.2) ∞_i(u) = ∞_j(u) ∉ ∪_k τ_k for every i.
(2.3) ∞_i(u) < ∞_j(u) and ∞_i(u) ∈ τ_i \ ℓ for every i < j.
(2.4) u = ∞_i(u) = ∞_j(u) ∈ ℓ for every i < j.

In other words, if $(\tau_k)_k$ is a sequence of finite subtrees of T, there is a subsequence $(\tau_k)_{k \in M}$ which is a Δ -system of root being black points and...

In other words, if $(\tau_k)_k$ is a sequence of finite subtrees of T, there is a subsequence $(\tau_k)_{k \in M}$ which is a Δ -system of root being black points and...

The proof is a deep analysis of the "new points" and uses Ramsey Theorem many times.

The proof is a deep analysis of the "new points" and uses Ramsey Theorem many times. The following is a consequence of the previous result.

Theorem 23

If \mathcal{A}_1 and \mathcal{C}_1 are a multiplication of \mathcal{A}_0 and \mathcal{C}_0 by S respectively, then $(\mathcal{A}_1 \sqcup_a [T]^{\leq 1}) \odot (\mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1)$ is a multiplication of $\mathcal{A}_0 \odot \mathcal{C}_0$ by S

The proof is a deep analysis of the "new points" and uses Ramsey Theorem many times. The following is a consequence of the previous result.

Theorem 23

If \mathcal{A}_1 and \mathcal{C}_1 are a multiplication of \mathcal{A}_0 and \mathcal{C}_0 by S respectively, then $(\mathcal{A}_1 \sqcup_a [T]^{\leq 1}) \odot (\mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1)$ is a multiplication of $\mathcal{A}_0 \odot \mathcal{C}_0$ by S

Corollary 24

If there are CL-sequences on chains of $(T, <_c)$ and of $(T, <_a)$, then there is a CL-sequence on T (with any total order).

First main result

In order to construct CL-sequences of families on all cardinals below the first Mahlo cardinal, we use the following:

First main result

In order to construct CL-sequences of families on all cardinals below the first Mahlo cardinal, we use the following:

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ , κ is Mahlo cardinal iff there is no special κ -Aronszajn tree, ie. a tree (T, <) of height κ with no cofinal branches, levels have size < κ and there is $f : T \rightarrow T$ satisfying:

(1)
$$f(t) < t$$
 for $t \in T$ except of the root;

(2) for all $t \in T$, $f^{-1}(\{t\})$ is the union of fewer than κ many antichains.

First main result

In order to construct CL-sequences of families on all cardinals below the first Mahlo cardinal, we use the following:

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ , κ is Mahlo cardinal iff there is no special κ -Aronszajn tree, ie. a tree (T, <) of height κ with no cofinal branches, levels have size < κ and there is $f : T \rightarrow T$ satisfying:

(1)
$$f(t) < t$$
 for $t \in T$ except of the root;

(2) for all $t \in T$, $f^{-1}(\{t\})$ is the union of fewer than κ many antichains.

Theorem 26

If T is a special κ -Aronszajn tree and there is a CL-sequence of families on every $\lambda < \kappa$, then there is a CL-sequence of families on T.