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Summary of results in Banach spaces

The Tsirelson space is a reflexive Banach space with no subsymmetric
sequences.

(Ketonen, 1974) Any Banach space of density equal to the first ω-Erdös
cardinal has subsymmetric sequences.

(Odell, 1985) There is a Banach space of density c with no subsymmetric
sequences.

(Argyros, Motakis, 2014) There is a reflexive Banach space of density c with
no subsymmetric sequences.

(B., Lopez-Abad, Todorcevic) For every κ smaller than the first inaccessible
cardinal, there is a reflexive Banach space of density κ with no subsymmetric
sequences.

(B., Lopez-Abad, Todorcevic) For every κ smaller than the first Mahlo
cardinal, there is a reflexive Banach space of density κ with no subsymmetric
sequences.

What is the smallest cardinal κ such that every (reflexive) Banach space of
density at least κ has a subsymmetric sequence?
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First main result

Our main purpose in this talk is to give elements of the proof of the
following:

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is
a CL-sequence of families on κ.

(Fn)n on κ is a CL-sequence if each family is hereditary and compact and
Fn+1 is a multiplication of Fn by S.

There is a CL-sequence of families on κ iff there is a CL-sequence of
families on any index set of cardinality κ.

If there is a CL-sequence of families on κ, then there is a CL-sequence
of families on every λ < κ.
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Multiplication of families

Given F on κ and H on ω, G on κ is a multiplication of F by H if every
infinite sequence (sn)n in F has an infinite subsequence (tn)n such that,
for every x ∈ H,

⋃
n∈x tn ∈ G.

Example 14

If F is a hereditary and compact family on κ, then G = F tF t · · · t F is
a multiplication of F by [ω]≤n, where F t F = {s ∪ t : s, t ∈ F}.
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A CL-sequence on ω

Example 15

Given hereditary and compact families F and F ′ on ω, let

F ⊕ F ′ = {s ∪ t : s < t, s ∈ F ′, t ∈ F},

F ⊗ F ′ = {
⋃
k<n

sk : n ∈ ω, sk < sk+1, sk ∈ F , {min sk : k < n} ∈ F ′},

and notice that G = (F ⊗ S)⊕F is a multiplication of F by S.

Define inductively:

F0 = S;

Fn+1 = (Sn ⊗ S)⊕ Sn.

(Fn)n is a CL-sequence of families on ω.
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Stepping up multiplications of families

In order to prove the first main result, we make use of a notion of
multiplication of families on partially ordered sets (instead of cardinals):

let P = (P, <P) be a partial ordering. By a family on chains of P we
mean a family on P whose elements are chains. Given a family F on
chains of P and a family H on ω, we say that a family G on chains of P is
a multiplication on chains of F by H if every infinite sequence (sn)n in F
such that

⋃
n sn is a chain has an infinite subsequence (tn)n such that, for

every x ∈ H,
⋃

n∈x tn ∈ G.

Notice that in case the order is total (e.g. P is a cardinal), this notion
coincides with the previous one.

For a fixed set P, we will consider multiplications on chains of families on
P with respect to some partial order, but also with respect to any total
order on P. In this case, we will say “multiplication” instead of
“multiplication on chains”.
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Some warming up: passing from κ to 2κ

Given a cardinal κ, let T = 2≤κ be the complete binary tree of height
κ+ 1 and let < denote the usual partial order on T and ht : T → κ+ 1
be the height function.

Given a family F on κ(+1), let
CF = {s ∈ [T ]<ω : s is a chain and ht ′′s ∈ F}.

Fact 16

(i) If F is hereditary and compact, then so is CF .

(ii) If G is a multiplication of F by some H on ω, then CG is a
multiplication on chains of CF by H with respect to <.
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Notice that given P and Q be partial orderings with infinite chains and
λ : P → Q, we can similarly define

CF = {s ∈ [Q]<ω : s is a chain and λ′′s ∈ F},

for some family F on P. The same proof yields a more general result:

Theorem 17

Let λ : P → Q be such that it takes chains into chains and is one-to-one
on chains.

(i) If F is hereditary and compact, then so is CF .

(ii) If G is a multiplication on chains of F by some H on ω, then CG is a
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Some warming up: passing from κ to 2κ

Our goal now is to pass from multiplications on chains of (T , <) to
multiplications on T (with any total order), meaning that the
multiplication of a family F on T must contain many unions of elements
of F and not only unions within some chain.

Given a family C on T , let

BC = {s ∈ [T ]<ω : the chains of 〈s〉 belong to C},
where 〈s〉 = {t0 ∧ t1 : t0, t1 ∈ s}.

Theorem 18

If C is a hereditary and compact, then so is BC .

If D is a multiplication on chains of C by H on (T , <), then BD is a
multiplication of BC by H on T (with any total order).

Corollary 19

For every cardinal κ below the first inaccessible, there is a CL-sequence
(Fn)n of families on κ.
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Stepping up below the first Mahlo cardinal

In order to construct CL-sequences of families on all cardinals below the
first Mahlo cardinal, we have to deal with families on more complex trees
than binary trees.

Let (T , <) be a (rooted) tree and define the following auxiliary partial
order on T :

t <a s iff t and s they are immediate successors of the same node.

Notice that being a chain in (T , <a) means being a particular type of
antichain with respect to < (which we denote by <c from now on): a
subset of immediate successors of a single node of T .
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Stepping up below the first Mahlo cardinal

Given A and C families on T , let A� C be the family of finite subsets s of
T such that:

the chains of 〈s〉 with respect to <c belong to C (as in the case of the
binary tree);

and for every t ∈ T , Is ′′t 〈s〉 ∈ A,

where Is ′′t x = {immediate successors of t below some element of x}.

Lemma 20

Any infinite set X of a tree T contains either an infinite chain, or an
infinite comb, or an infinite fan. Hence, any infinite subtree τ of a tree T
contains either an infinite chain, or an infinite fan.

Proof.

If follows from Ramsey Theorem.
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Combinatorial analysis

Theorem 21

If A and C are hereditary and compact, then so is A� C.

Proof.

Hereditariness is clear. For compacity, let (τk)k be a sequence in A� C. It
is enough to assume that τk ’s are subtrees. Assume it converges to some
infinite set τ , which has to be a subtree.

If τ has an infinite chain C , then (τk ∩ C )k which would converge to
C , contradicting the compacity of C.

If τ contains an infinite fan F with root u, then (Is ′′u τk)k would
converge to Is ′′uF , contradicting the compacity of A.

Now, if A1 and C1 are a multiplication of A0 and C0 by S respectively,
then we want to find a multiplication of A0 � C0 by S. The following
result is needed...
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Theorem 22 (Canonical form of sequences of subtrees)

Suppose that (τk)k is a sequence of finite subtrees of T . Then there is a
subsequence (τk)k∈M which is a ∆-system of root %̄ such that

(1) For every i 6= j and k 6= l in M one has that

τ∞ := (τi , τj)∞ = (τk , τl)∞,

where (τi , τj)∞ is the set of maximal elements u of % with the property that
there are v ∈ 〈τi ∪ τj〉, t0 ∈ τ0 \ τ1 and t1 ∈ τ1 \ τ0 with u ≤ v ≤ t0, t1.

(2) Let u ∈ τ∞. For each i < j let $i,j(u) be the (unique) maximal v ∈ 〈τi ∪ τj〉
with the property that there are t0 ∈ τ0 \ τ1 and t1 ∈ τ1 \ τ0 with
u ≤ v ≤ t0, t1. Then $i (u) := $i,j(u) = $i,k(u) for every i < j < k, and
$i (u) ≤ $j(u) for every i ≤ j . Moreover, one of the following holds.

(2.1) $i (u) < $j(u) for every i < j and $i (u) /∈
⋃

k τk for every i < j .
(2.2) $i (u) = $j(u) /∈

⋃
k τk for every i .

(2.3) $i (u) < $j(u) and $i (u) ∈ τi \ % for every i < j .
(2.4) u = $i (u) = $j(u) ∈ % for every i < j .



In other words, if (τk)k is a sequence of finite subtrees of T , there is a

subsequence (τk)k∈M which is a ∆-system of root being black points and...
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Combinatorial analysis

The proof is a deep analysis of the “new points” and uses Ramsey
Theorem many times.

The following is a consequence of the previous
result.

Theorem 23

If A1 and C1 are a multiplication of A0 and C0 by S respectively, then
(A1 ta [T ]≤1)� (C1 tc C1 tc C1 tc C1 tc C1) is a multiplication of A0 �C0
by S

Corollary 24

If there are CL-sequences on chains of (T , <c) and of (T , <a), then there
is a CL-sequence on T (with any total order).
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First main result

In order to construct CL-sequences of families on all cardinals below the
first Mahlo cardinal, we use the following:

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ, κ is Mahlo cardinal iff there is
no special κ-Aronszajn tree, ie. a tree (T , <) of height κ with no cofinal
branches, levels have size < κ and there is f : T → T satisfying:

(1) f (t) < t for t ∈ T except of the root;

(2) for all t ∈ T , f −1({t}) is the union of fewer than κ many antichains.

Theorem 26

If T is a special κ-Aronszajn tree and there is a CL-sequence of families on
every λ < κ, then there is a CL-sequence of families on T .
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